Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

نویسندگان

  • Yuvaraj Manoharan
  • Qingmin Ji
  • Tomohiko Yamazaki
  • Shanmugavel Chinnathambi
  • Song Chen
  • Singaravelu Ganesan
  • Jonathan P Hill
  • Katsuhiko Ariga
  • Nobutaka Hanagata
چکیده

BACKGROUND Class B CpG oligodeoxynucleotides primarily interact with Toll-like receptor 9 (TLR9) in B cells and enhance the immune system through induction of various interleukins including interleukin-6 in these immune cells. Although free class B CpG oligodeoxynucleotides do not induce interferon (IFN)-α production, CpG oligodeoxynucleotide molecules have been reported to induce IFN-α when loaded onto nanoparticles. Here, we investigated the in vitro induction of IFN-α by a nanocarrier delivery system for class B CpG oligodeoxynucleotide molecules. METHODS For improving the capacity to load CpG oligodeoxynucleotide molecules, flake-shell SiO(2) nanoparticles with a specific surface area approximately 83-fold higher than that of smooth-surfaced SiO(2) nanoparticles were prepared by coating SiO(2) nanoparticles with polyethyleneimine (PEI) of three different number-average molecular weights (Mns 600, 1800, and 10,000 Da). RESULTS The capacity of the flake-shell SiO(2) nanoparticles to load CpG oligodeoxynucleotides was observed to be 5.8-fold to 6.7-fold higher than that of smooth-surfaced SiO(2) nanoparticles and was found to increase with an increase in the Mn of the PEI because the Mn contributed to the positive surface charge density of the nanoparticles. Further, the flake-shell SiO(2) nanoparticles showed much higher levels of IFN-α induction than the smooth-surfaced SiO(2) nanoparticles. The highest IFN-α induction potential was observed for CpG oligodeoxynucleotide molecules loaded onto flake-shell SiO(2) nanoparticles coated with PEI of Mn 600 Da, although the CpG oligodeoxynucleotide density was lower than that on flake-shell SiO(2) nanoparticles coated with PEI of Mns 1800 and 10,000 Da. Even with the same density of CpG oligodeoxynucleotides on flake-shell SiO(2) nanoparticles, PEI with an Mn of 600 Da caused a markedly higher level of IFN-α induction than that with Mns of 1800 Da and 10,000 Da. The higher TLR9-mediated IFN-α induction by CpG oligodeoxynucleotides on flake-shell SiO(2) nanoparticles coated with a PEI of Mn 600 Da is attributed to residence of the CpG oligodeoxynucleotide molecules in endolysosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding Mode of CpG Oligodeoxynucleotides to Nanoparticles Regulates Bifurcated Cytokine induction via Toll-like Receptor 9

The interaction of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) with Toll-like receptor 9 (TLR9) activates the immune system. Multimeric class A CpG ODNs induce interferon-α (IFN-α) and, to a lesser extent, interleukin-6. By contrast, monomeric class B CpG ODNs induce interleukin-6 but not IFN-α. This difference suggests that the multimerization of CpG ODN molecules is a key fact...

متن کامل

Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines

BACKGROUND Cytosine-phosphate-guanine (CpG) oligodeoxynucleotides activate Toll-like receptor 9, leading to induction of proinflammatory cytokines, which play an important role in induction and maintenance of innate and adaptive immune responses. Previously, we have used boron nitride nanospheres (BNNS) as a carrier for delivery of unmodified CpG oligodeoxynucleotides to activate Toll-like rece...

متن کامل

Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides

CpG oligodeoxynucleotides (ODNs) stimulate innate and adaptive immune responses. Thus, these molecules are promising therapeutic agents and vaccine adjuvants against various diseases. In this study, we developed a novel CpG ODNs delivery system based on polyethyleneimine (PEI)-functionalized boron nitride nanospheres (BNNS). PEI was coated on the surface of BNNS via electrostatic interactions. ...

متن کامل

Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity.

Unmethylated cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG-ODNs) exhibit potent immunostimulating activity by binding with Toll-like receptor 9 (TLR9) expressed on antigen-presenting cells. Here, we show that CpG-ODN encapsulated in cationic liposomes (CpG-liposomes) improves its incorporation into CD11c(+) dendritic cells (DCs) and induces enhanced serum interleukin (IL)-12 leve...

متن کامل

Impact of modifications of heterocyclic bases in CpG dinucleotides on their immune-modulatory activity.

Synthetic phosphorothioate oligodeoxynucleotides (ODN) bearing unmethylated CpG motifs can mimic the immune-stimulatory effects of bacterial DNA and are recognized by Toll-like receptor 9 (TLR9). Past studies have demonstrated that nucleotide modifications at positions at or near the CpG dinucleotides can severely affect immune modulation. However, the effect of nucleotide modifications to stim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012